New Core i7 PC: The Experience

 image82image202image162image282image68image242

First Impressions

Where we last left off, I had tightened the last Phillips-head screw on the last hard drive, double-checked all the power connectors, and sat back for a moment of reflection after five hours of PC assembly. 

The moment of truth had arrived:  I pressed the power button. 

The fans jumped and spun, the motherboard flashed green and amber lights, and the hard drives ticked and began their soft whining climb up to a cruising speed of 7200 RPM.   The whole system settled into a muted whirr — not too loud, I thought, even with the case still open. 

Now – on to the operating system.

Software installation: like butter

Windows 7 Ultimate 64-bittook only about five minutes from beginning to end for a complete install from DVD.  It turns out that on this new PC, everything installs with whiplash.  The entire Microsoft Office 2007 Professional suite took only about five minutes as well.    Kudos to Microsoft for their single-click OS install.  I like it.

If you recall, Windows XP required an inordinate amount of babysitting, popping up every few minutes to ask a silly question.  Yes, why couldn’t they ask *after* the install??

For a while, I ran around, downloading and chucking installations of must-have software into the maw of this beast:  FireFox, Picasa (image management), Avast!(antivirus), 7-Zip, Windows Live Writer (blogging), and so on.   It felt a little like I was tossing branches into a tree shredder.  Everything happened at breakneck speed – and no matter what I was doing, I could run off to do something else in another window, with no slowdown. 

We love multiple independent cores. 

Fast, redundant storage

In addition to the fabulous quad-core i7-860, I set this system up with a fast rear end: a RAID-10 “mirror of stripes” hard drive array.   The P7P55D-E motherboard has onboard Intel Matrix RAID, so I used the BIOS to set up a RAID-10  array of 4 x 500GB enterprise-class Seagate Barracuda SATA drives (“NS” class), for a total of near a terabyte of redundant, striped storage.  

This setup achieved a PassMark Disk Mark score of 1060 with a sequential read of 150 MB/s and sequential write of 133 MB/s.   I was pleasantly surprised it ranked within the Top 20 of “High End Hard Drives” (as of July 2010), besting a passel of SSD offerings from Crucial, Kingston, OCZ, and Intel.  

Fullscreen capture 762010 120658 PM

 

Fullscreen capture 762010 120602 PM

So I ended up with fast, reliable storage that beats almost anything out there in the consumer/desktop space, including a lot of SSD’s – with 7200 RPM SATA drives!  SSD’s are around 3x to 5x the cost for the same storage, anyway.

Editorial opinion: At the time of this writing, SSD’s are still too expensive for general use at around US$2.50/GB, as compared to the cost of conventional spinning hard drives at around $0.75/GB.   That’s a premium of three times the cost.  But there’s no doubt that SSD’s will eventually replace today’s hard drives.  Now, they’re most effective as OS boot drives.   Related:  “Personal computers pre-configured with SSD drives?” on Philip Greenspun’s weblog.

Warning: RAID-10 arrays are not for the faint of technical heart.  They can be temperamental beasts, requiring rebuilding and “revalidation”  much more often than I would like.  The effect of this is more psychological than anything else:  I have never lost data with this array, but I can’t say it’s been completely maintenance-free.   There’s no real reason why they need to be so fidgety – it seems like the issues are mostly software ones:  I’m less than impressed with Intel’s Matrix Storage Manager, now rebranded as Intel’s Rapid Storage Technology (RST).   It’s so hard to see or understand what’s really going on with the array: what behavior the hard drives are exhibiting, or what even things like “verification” and “ media errors” are.  Intel guys, please read Donald Norman’s The Design of Everyday Things!  

Eight cores of goodness

If there was one thing which viscerally brought home the raw power of this new computer at my beck and call, it was this image from the Task Manager showing a full eight cores available to Windows:

Task Manager showing eight cores
Cores, glorious cores!

We really only have four physical cores — hence the “quad-core” processor designation — but eight cores appear to the only through the magic of hyperthreading.  It’s is kind of like cheating — but sometimes it’s not.    

Hyperthreading is a technique whereby the processor design can take advantage of wait states in multithreaded applications to make a single physical core perform almost as well as two cores. 

Let there be light

Beyond the installs, everything opens almost instantly.  Frequently used apps like FireFox 3.6, Outlook 2007, Microsoft Word 2007, and Picasa seem to leap onto the screen when called.  Even Microsoft’s Internet Explorer, which is so painfully slow I switched a few years ago to FireFox (love it), opens its fat self within two seconds.

Ironically, one of the slowest applications to load is the one I’m writing this post in:  Windows Live Writer (Build 14.0.8117.416).   It seems to take forever to load, sometimes up to 20 seconds, even when I haven’t even told it to open a blog post!  I’m convinced that this is a classic data access strategy problem:  it’s hitting the web (my blog) on startup, even though (a) I didn’t ask it to open anything and (b) the designers should have cached all blog info locally, and quietly checked or re-loaded it on a background thread.   Windows Live Writer team: you officially have my permission to use any of the other seven threads that are available on my i7-860.  (Love your software, it’s the best.)  

With 4 GB of RAM, easily expandable to 8 GB, I no longer had to keep mental tabs on how many apps I had open: it didn’t matter.  I could have eight FireFox sessions with thirty tabs open (total); Microsoft Word, Picasa, Outlook, Windows Live Writer, TweetDeck, Windows Media Player; all open at the same time.  It didn’t matter. The box handled it easily.  

Overclocking

One of the reasons I chose a custom build vs. an off-the-shelf buy was to play with overclocking.  And, being a red-blooded American male, I just wanted to see how fast it could run.  Fortunately, Asus includes a handy, idiot-proof overclocking utility made just for folks like me, called Turbo EVO.  

Turbo EVO offers several ways to effortlessly overclock your system: CPU Level Up, which lets you choose from several levels, from “Fast” to “Crazy,” and TurboV AutoTuning, which through a series of reboots will tune your system to the maximum safe speed possible.  

The fastest I got my system to without really trying too hard (I selected the Extreme Tuning mode) was 3.66 GHz.   This put my system in the top ten fastest high-end CPUs in the world, according to the PassMark website.  

Fullscreen capture 772010 41723 PMUnfortunately, I did not install a CPU cooler the first time around (recommended).  When I downloaded and ran the Prime95 CPU torture test, the Asus TProbe utility complained as the CPU temperature rose from around 40 C to 70C, then 75C, then… I stopped it at 80 C.  Surely I should check before I subject the 45nm silicon to temperatures above the boiling point.  (Answer:  keep it at around 70 C or less.)

Tip: choose and install a CPU cooler with your build.  Most coolers require the motherboard to be out of the chassis for installation.

Since the box ran so fast anyways, I had no problem dialing back to stock speeds until I had a heat management solution in place.  After some research, I chose the very popular and effective Cooler Master Hyper212; unfortunately, I had to tear the system down to the motherboard to install it. 

Energy consumption profile

At stock settings of 2.8 GHz (i.e. not overclocked), this Core i7-860 build drew around 110 watts at idle, proving to me that reusing my Antec 430W True Power supply was an appropriate choice.  

Overclocked to 3.36 GHz via CPU Level Up, “Crazy” setting – my current everyday setting — the system draws about 150W during normal operation, and peaks at about 290W during a Prime95 run. 

Considering that’s about the amount of energy used to power a light bulb or two, I thought this was a pretty good use of watts.  In addition, my other two Dell servers draw about 100-110W each, and they run ten times slower.   

Energy efficiency was one of the reasons I decided to invest in the latest chip technology;   see Evaluating PC computing hardware.

Conclusion

Easy build, great system, love it. 

Advertisements

One response to this post.

  1. wow, even though I only understood about 2/3rds of the post due to my non-technical savvy, it was a great post and if I needed a desk system I would sure pay YOU to build it for me. Thanks for the tips. I love my mac but it doesn’t have the blinding speed you are describing.

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: